UNCLASSIFIED

AD NUMBER

ADB013480

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
only; Test and Eval uation; 01 AUG 1975. O her
requests shall be referred to Ballistic Mssile
Def ense Advanced Technol ogy Center, PO Box
1500, Huntsville, AL 35807.

AUTHORITY
usa bndatc Itr, 6 may 1977

THISPAGE ISUNCLASSIFIED

. Pia, g ST

THIS REPORT HAS BEEN DELIMITED

AND CLEARET™ FOR PUBLIC RELEASE

oD DIRECTIVE 5200.20 AND

UNDER D
PON

NO RESTR
1TS USE AN

DISTRIBUTION STATEMENT A

1CTIONS ARE IMPOSED \
D D1SCLOSURE.

APPROVED FOR pPUBLIC RELEASE;

DISTE}BUTION UNLIMITED,

27332-6921-024

//
3 : i /
AbBU13 450 |

<7
n_b

S SOFTWARE REQUIREMENTS
. E ENGINEERING METHODOLOGY
=

£
=

CDRL co11 1 SEPTEMBER 1976

Prepared For

BALLISTIC MISSILE DEFENSE
‘ ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

S —— =

|}
[
|

TRW

DEFENSE AND SPACE SYSTEMS GROUP
HUNTSV!LLE, ALABAMA

TRW

SN27332.000
1780.1.76-5765
1 September 1976

Director, Ballistic Missile Defense
Advanced Technology Center

P. 0. Box 1500

Huntsville, Alabama 35807

Attention: ATC-P

Subject: Contract DASG60-75-C-0022
CDRL Sequence No. CO11
Software Requirements Engineering Methodology

In accordance with the requirements of the subject CDRL, two (2) copies of
the Software Requirements Engineering Methodology are herewith submitted.

distribution of this report is snown below.

TRW SYSTEMS, INC.
gy 7
Z .
‘4’)'“%/-/';-4/{:4&,
po- G2 M/ Grujich
Contracts Specialist
/| Mail Station R2/1054
TRW Defense and Space Systems Group

Enclosures: As stated

cc: BMDPO, Arlington, VA Auburn University, Auburn, AL
ATTN: DACS-BMT, Dr. R. Merwin (1) ATTN: Dr. H. Troy Nagle (1)
DACS-BMS (1) CSC, Huntsville, AL
BMDSC, Huntsville, AL ATTN: Mr. P. C. Belford (1)
ATTN: BMDSC-C (w/o encl.) GRC, Santa Barbara, CA
DDC, Alexandria, VA (2) ATTN: Dr. Charles Perkins (1)
Aeronutronic Ford, Willow Grove, PA (1) Logicon, San Pe@ro, CA
SDC, Huntsville, AL ATTN: Wm. C. Nielson (1)
ATTN: Mr. Robert Covelli (1) SAI, Huntsville, AL
Library (10) ATTN: Mr. Robert Curry (1)
Texas Instruments, Huntsville, AL Univ. of Calif., Berkley, CA
ATTN: Dr. R. Bates (1) ATTN: Dr. C. V. Ramamoorthy (1)

AFPRO-TRW (w/o encl.)

SYSTIMS GROUP OF TAW INC.
ARMY SUPPORT FACILITY » 7702 GOVEANORS DRIVE WEST, HUNTSVILLE, ALABAMA 35805 (205) 837-2400

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Continued)

The methodology systematically develops the specification from source
documentation at the system level, documenting omissions and errors of
the source materials in the process. The produced requirements are
provably consistent, and may be validated against system objectives
through the generated simulation. The entire process i1s subject to
systematic management through definable and verifiable milestones
supported by REVS.

UNCLASSIFIED

CICTJ:ITV CLASSIFICATION OF THIS PAGE(When Deta Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

: READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2, GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
CORL” CO11
4. TITLE (and Subtitle) - | S- TYPE OF REPORT A PER|OD COVERED

T

Jrr—— - =) . \\
l/ },’fSoftware Requirements Engineering Methodology | 7 Technical eP’lt'!)

= : — — — et .l._uummua.ﬁ_ixrcy NUMBER
I:i !Ti""\rt.'r i 2?332'6‘92]"szJ
| 1. AUTHORfa)

. NTRACT O ANT NUMBER(a)

) OJM D.Richter, J. ., Mason,LK s el e i
Y imw /A fovd I e, -\15‘[il '}

9. PERFORMING ORGANIZATION NAME AND ADDRESS H: i% /Lj f’;/ , 0. :222F‘QA:OERLKESS:‘TT'NPUFLOBJEEF?J. TASK

TRW Defense and Space Systems Group) s P
7702 Governors Drive, West 6.33.04.A 27 gé/ ¥
Huntsville, Alabama_ 35805 ~ [

11. CONTRQLL|NG OFFICE NAME AND ADD'RESS -T[I | '2". AEPORT OATE | g
' Ballistic Missile Defense Advanced Techno1ogy'\\- ¢ 1 Sep SENEERS76

Center, P. 0. Box 1500, Huntsville, AL 35807 | "> Wom
ATTN: _ATC-P 321

14, MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Oflice) 15. SECURITY CLASS. (of this report)

Unclassified
| 1Sa, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution 1imited to U. S. Government Agencies only; test and evaluation,
1 August 1975, Other requests for this document must be referred to
Baiiistic Missile Defense Advanced Technology Center, P. 0. Box 1500,

| Huntsville, AL 35807. ATTN: ATC-P

17. DISTRIBUTION STATEMENT (ol the abatract entered in Block 20, If difterent from Report)

18. SUPPLEWMCNTARY NOTES

! 19. KEY WORDS (Continue on reverse aide il necessary and ldentily by block number)

Software
Software Specification

Software Requirements
Software Development

ABSTRACT (Continue an reverse elde If nacesaary and Identity by block number)

A methodology is presented for the development and management of software

specifications. The technique is built upon a language (RSL) readable both by

j a computer and by man, and a set of tools termed collectively the Requirements
Engineering and Validation System (REVS). The tools provided for retention of

all requirements in a relational data base from which documentation, consis-

0 tency analyses, and simulations may be constructed atitomatically.i

' DD, on'ys 1473 eoiTion oF 1 nOV 6 15 OBSOLETE UNCLASSIFIED L/L)‘,/ C)'/',/

SECURITY CLASSIFICATION OF THIS PAGE (When Dele Entered) ‘f’ -

27332-6921-024

SOFTWARE REQUIREMENTS
ENGINEERING METHODOLOGY

CORL CON 1 SEPTEMBER 1976

DISTRIBUTION LIMITED TO U. S. GOVERNMENT AGENCIES ONLY; THE FINDINGS OF THIS REPORT ARE
TEST AND EVALUATION, 1 AUG 75. OTHER REQUESTS FOR THIS NOT TO BE CONSTRUED AS AN OFFICIAL
DOCUMENT MUST BE REFERRED TO BALLISTIC MISSILE DEFENSE DEPARTMENT OF THE ARMY POSITION.

ADVANCED TECHNOLOGY CENTER, ATTN: ATC-P, P.0. BOX 1500,
HUNTSVILLE, ALABAMA 35807.

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

TRW

DEFENSE AND SPACE SYSTEMS GROUP
Huntsville, Alabama

—p——— i ~ e —— -

27532-6921-024

SOFTWARE REQUIREMENTS
ENGINEERING METHODOLOGY

CDRL CON 1 SEPTEMBER 1976

Principal Autheys: Approved By:

M. D. Richter - Technical

J. D. Mason - ranagement

Principal Contributors: L. R. Marker, Manager
Software Requirements

M. W. Alford Engineering Program

I. F. Burns

H. A. Helton

J. T. Lawson

E oy

. D. Richfer; Hea ames E. Long, Managér
Methodology Research Huntsville Facility
and Development :

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

TRW

DEFENSE AND SPACE SYSTEMS GROUP
Huntsville, Alabama

i

——e——— —
e e e it

Section

|I8(0)

2.0

3.0

TABLE OF CONTENTS

Title
INTRODUCTION. . . & v v v v v v v e e e v W 585 0 6 0 o o
1.1 BACKGROUND . . & & & v i e v e e e e e e e e v o o s
1.2 SCOPE AND CONTENT OF THIS MANVAL « . .
1.3 OVERVIEW OF SREM ¢« v v ¢ v ¢ v 4 o v o o o

1.3.1 The Requirements Statement Language (RSL) . .
1.3.2 The Requirements Engineering and Validation
System (REVS) . . & v v v v v v v v v e e v
1.3.3 The Engineering Methodology
1.3.4 Specification Management.

1.4 APPLICABILITY. ¢ ¢ o ¢ ¢ v o o o o v o o o s
1.5 TERMINOLOGY. « ¢« v v v v 0o v v v v N B

PART I - TECHNICAL APPROACH

SREM OVERVIEW ARSI INE S B o ke
2.1 THE TRACK LOOP SYSTEM EXAMPLE. :

2.1.1 Preliminary Ballistic Missile Defense System.
2.1.2 TLS Requirements. « . ¢« v ¢ ¢ o &+ o« &

2.2 SUMMARY OF APPENDICES. 3029

FUNCTIONAL REQUIREMENTS ¢ ¢ v v o o v o
3.1 PHASE 1 - DEFINITION OF SUBSYSTEM ELEMENTS

Initial Inputs. ¢ ¢ o v o o ¢ o o &
Interface Definition. ¢« « « ..
Message Definition.
The Interface Data Hierarchy.
Problems of Definition. « «
R_NET Definition. ¢« oo v o o
Entity Definition 40 H o 8o
The Entity Data Hierarchy « « « .
Independent FILEs« .« ¢« ¢« o ¢« o o &
.10 Summary of Phase I. « + ¢« ¢ ¢ ¢« « ¢ &

3.2 PHASE 2 - EVALUATION OF THE KERNEL

3.2.1 Data Naming Conventions « . ¢« « « ¢ &
3.2.2 Structural Data Definitions
3.2.3 Entering R NETs inthe ASSM
3.2.4 The STRUCTURE OF an RNET+ . .
3.2.5
3.2.6

(%)
.
-—

e
ot vt el cmmdd md vl — —t
.

WWwwWwwWwww
« = e o o
. L] . . L] - L] .
WO WM —

w
—

Checking the Kernel with the Aid of RADX.
Summary of Phase 2. . . « « ¢ ¢« ¢« ¢ o ¢ ¢ o .

Page

3-39
3-41

TABLE OF CONTENTS (Continued)

Section Title Page

3.3 PHASE 3 - COMPLETION OF THE FUNCTIONAL DEFINITION. . 3-42
' 3.3.1 Data Transactions 3-43

3.3.2 RADX Evaluation of Data Transactions.

3.3.3 Hierarchy Transitions « . + « + & 3-47

3.3.4 Further Data Definition 3-49

3.3.5 Evaluation of the ASSM Using RADX 3-53

3.3.6 Summary of Phase 3.« ¢ ¢ ¢ .. 3-59
3.4 PHASE 4 - DEVELOPMENT OF FUNCTIONAL MODELS 3-60

oooooooooooooooooooo

oooooooooooooooo

3.5.1 Originating Requirements. « 3-63
| 3.5.2 ReferenCes. . . ¢ ¢ ¢ v ¢ ¢ o o o o o o o o o 3-63
' 3.5.3 Decisions . . & & ¢ v v et e e e e e e e e s 3-64

y i 3.6 INFORMATI VE MTERIAL e o o 8 e e & ® ® o o ® e o @ 3-65

3-60] Description ® % e o e & ® © ¢ o 6 3 e o ® o o 3-65
‘ 3.6.2 Synonym . . . ¢ . e e e e e e ol 3-66

3.6.3 Authorship. o oy o e ew 3-66
' 3.6.4 Complementary Relationships 3-66
\ 3.6.5 Structural References . . . « « « o v o « « » 3-66
l 3.7 ANALYTIC MODELS... & v v v v v v o v o o o o o o u s 3-67

4.0 PERFORMANCE REQUIREMENTS. PRI e R E N S A 4L

. 4.7 LOCATE TEST POINTS . v v v v v v o e v o o o e o e 4-5

1 4.2 DEFINE DATA AND TESTS. « v v v v v v v o o o o o oo 47
4.3 DEFINE SUPPLEMENTAL VALIDATION POINTS AND DATA . . . 4-13

| PART I1 - MANAGEMENT APPROACH
; 5.0 INTRODUCTION. & « & v v o 0 o v v . . R |

6.0 DEFINING MEASURABLE MILESTONES. 6~
3 6.1 SOFTWARE REQUIREMENTS DEVELOPMENT. 6-3
6.2 SOFTWARE REQUIREMENTS VALIDATION 6-7

6.3 SUMMARY, ¢ v v v v oo

TABLE OF CONTENTS (Continued)
Section Title Page
7.0 PLANNING. » + v v v e e e e e e e e e e e e 7-1 |
7.1 PRELIMINARY GUIDELINES« v v ¢« ¢« v v v v « . 7-1
7.2 COST MODEL . . & & v & v v e e e et o o o o o o o s 7-2
7.3 SCHEDULING . & v v v v v 6 et o o ¢ e o o o o « o @ 7-3
8.0 MANAGEMENT CONTROL. « v v « v + & 510 0 b blo T 8-1
8.1 CONTROL MECHANISMS . . & & & ¢ v ¢ v v o o o o o o 8-1
8.2 CHANGE CONTROL c e e e e e e e e s 8-4
8.3 SELLING THE SOFTWARE REQUIREMENTS. 8-7
9.0 CONCLUSIONS & v v v v v o o & SE0LE O 0 B o O o 9-1
APPCNDIX A - RSL TERMINOLOGY « v ¢« o o & Mo ol ol oo A-1
APPENDIX B - DRAFT REPRESENTATION OF THE KERNEL OF TLS B-1
APPENDIX C - TLS KERNEL. . . . +« ¢« v v ¢« ¢ « « & . e s s e e e e s C-1
APPENDIX D - TLS REQUIREMENTS NETWORKS 5 OJO M Q@ O O g D-1
APPENDIX E - COMPLETE TLS DATA BASE. Sl Bl s . E-1
APPENDIX F - TLS SOURCE SPECIFICATIONS T F-1
REFERENCES & & v v v v e e e e e e e s e e o o o o o o o o s e e e R-1
|
| vii iy
| . @;

N

R—

Figure
2-1
3-1

3-3
3-4

3-6
3-7

3-9

3-10
3-1
3-12
3-13
3-14

4-2
6-1
6-2
6-3
7-1

7-2
7-3

8-1
8-2

LIST OF FIGURES
Title

Track Loop System A R R
RSL Subsystem Entries e e e e e e
An Elementary Interface Hierarchy
c2 Inpult Hierarehy: & 2. . @ o o - il el e s . - & & 8s
RSL Message Entries ¢ v ¢ ¢ ¢ ¢ v v v v v v 0 v
Interface Data Hierarchy.
RSL Decision Entry. ¢« v ¢« v ¢ v v v v o o o o 2 &
Three Asynchronous R NETs S 0K D D0 oo
Entity Data Hierarchy S HHoOoD & o o o 3
Entity Hierarchy. . . & v ¢ v v v v v e e e e v e e e e
RSL Entity Entry. . . . ¢ ¢« ¢ ¢ v v ¢ ¢ ¢ ¢« « v s
RSL Data Entry. . . « ¢« ¢ ¢ ¢ ¢ ¢ v o ¢ o & SRR
RSL Initial ALPHA Entry e e e e
RSL Additional ALPHA Entry. R
RSL BETA Entry. i Y e

Performance Requirements Statements Representation at
the Completion of SREM Step - Locate Test Points.

Performance Requirements Statements Representation at
the Completion of SREM Step - Define Data and Tests . . .

Overview of SREM Activities (Development and Validation

of Functional Requirements) e
Sample Activity Network for Software Requirements
Development « . . . v v .. 50 H s ok N
Sample Decisions from Track Loop. . « « v ¢« v o « « & s
Sample Activity Network for Software Requirements
Validation. 5000 DK OG0 go
Rough Spread of Activities by Level
Rough Spread of Manpower for Example. « . .
Sample Milestone Schedule for Small Project
2§3ple Milestone Schedule of Figure 7-3 With Slack Time
ed. S Y & I

Interests Shared by SRE . . « ¢ v ¢ ¢ ¢ ¢ ¢ v ¢ ¢ ¢« o o &
Change Flow Into Update of Baseline s e el sl

6-4
6-6

6-9
7-7
7=9
7-11

7-12
8-2
8-6

LIST OF TABLES

i Table Title Page
7.1 Definition ¢ Symbols Used in Cost Model. « o . 7-4
| 8.1 SREM Focus of Management Control on Substantive Issyes. . 8-3
; 8.2 Control Mechanisms for Major Managerial Control Issues. . 8-5
8.3 Selling Software Requirements . R 3

X1

* » 3 e o

1.0 INTRODUCTION /

1.1 BACKGROUND

' The history of digital computing can be meaningfully traced for some
three decades, to the ENIAC and UNIVAC I systems of the 1940's. For the
first half of that period, limitations of computer hardware were the primary
constraint on the application of digital systems. In the past ten to fifteen
years, however, hardware technology has improved to the poirt where software
technology has become the limiting factor. The tremendous speed and com-
putational power of modern computers has made possible very complex and
sophisticated systems. The software imbedded in such systems provides not
only the mathematical data transformations required, but also provides the
control functions of many of the system components (suph as radars) and

of the system as a whole. Therefore, the software is uniquely critical to
the successful operation and performance of the system.

The need for improving the techniques of designing, building, testing,
) and managing software has been well understood for several years and has
resulted in vigorous research and development within the Government, indus-
try, and the universities. This has led to the development of improved
programming languages, development support tools, and management approaches,
as well as a strong theoretical basis in such areas as queueing theory and
dynamic programming and many pragmatic development approaches such as struc-
tured programming and top down design. While significant improvements have
been obtained in the state-of-the-art in program design, implementation, and
testing, much additional research is needed and is being actively pursued --
especially in such areas as proof-of-correctness, data base design, etc.

there 1s an additional phase of software development which is especially
critical: the definition and specification of the functional and performance
requirements which the software must satisfy. This phase is especially
critical due to the very high cost and schedule leverage which exists. Sim-
ple errors in the requirements, if not detected until after the software has
been built, are extremely expensive in terms of time and manpower to correct.

’ While it has been apparent for quite some time that the state-of-the-art in

developing requirements needed improvement, it was not possible to accurately

F

; s ~

identify and quantify the improvements needed until after the design imple-
mentation, and test phases became more predictable and controlled. Thus,

in the fall of 1973, BMDATC initiated the Software Requirements Engineering
Program with the objective of developing a set of tools and techniques for
defining and specifying the software requirements for ballistic missile
defense (BMD) software. The result of that research is the Software Require-
ments Engineering Methodology (SREM) which is described in this report.

The first step in developing the Software Requirements Engineering
Methodology was to determine the properties required of a specification
and of the individual requirements of which it is composed. Returning to
first principles, we note that:

o A specification is the set of all requiremenits which must
be satisfied, and the identification of the subsets which
must be met concurrently; and

e A specification is neither legally binding nor realizable
unless it is consistent with both the laws of logic and
the laws of nature.

In addition, we observe that

o A specification defines the properties required of a product
such that any delivery satisfying the specification satisfies
the objectives of the specifier.

Taken together, the above truisms lead to a set of properties which

a specification must have from a technical point of view:

¢ Internal Consistency
e Consistency with the physical universe
e Freedom from ambiguity.

Economic and management considerations lead to an additional set of
properties which a good specification must exhibit:

Clarity

Minimality

Predictability of specification development
Controllability of software development.

1-2

— e e

)

Since freedom from amhiguity is mandatory, we naturally looked to a
machine-readable statement of the requirements. It is a known principle
of computer operation that input ambiguities can be tolerated only insofar
as they are deéigned into the software. Thus, by employing an unambiguous
language, and by translating and analyzing it with a program intolerant of
ambiguity, we can ensure an unambiguous statement of requirements. However,
the need for clarity of communication strongly suggests a language resembling
common speech, so that the specification can be read by managers, systems
enginecrs, and others who are not specially trained in the language.

To provide an internally consistent specification, analyses of the
requirements statements are incorporated into the system supporting the
language. These analyses include semantic and syntactic decomposition of
the individual statements, and analysis of the composite flow of data and
processing. Support of consistency with the physical universe is accomplished
by converting the specification unambiguously into a model (simulation)
which can be executed against a model of the real world.

Finally, to support control of both the specification process and
software development, a means of selective documentation and analysis of
the specification is provided. The integration of these tools with a
sound and methoriical engineering and management approach provides predict-
ability in the specification process and aids in avoiding overspecification.

1.2 SCOPE AND CONTENT OF THIS MANUAL

This manual is essentially a SREM User's Guide for development of
software requirements specifications. It is not a cookbook, in that it does
not attempt the inherently impossible task of converting the genuinely
creative aspects of specification development into rote, deductive opera-
tions. However, it does define guidelines through which these creative
operations are recognized, applied and restricted to their natural roles
in the specification development process. In this manner, the scale and
range of creativity can be defined and contained, thus allowing the speci-
fication development process to be scheduled with some degree of confidence.
It should be noted that creative features remain in the methodoiogy and as
a consequence the major development effort must be conducted by experienced,
knowledgable engineers. However, SREM has been structured in a manner such

1-3

s S0 o TR iz y T T Y i s s e e

T . e WS

that many elements of specification development can be identified and
isolated to permit junior engineering personnel to perform the details
of specification statement definition and documentation preparation.

This manual is organized into two parts: Part I deals with the
technical aspects of software requirements engineering. The methodology
is described in detail, step-by-step, in the context of an example begin-
ning in Section 2. Part II discusses the management of the specification
development process with emphasis on how the specific features of SREM and
its tools can be used to advantage in the management of the activities.

This document is intended as a User's Guide for the requirements
engineer. It describes the steps of the Software Requirements Engineering
Methodology and defines the techniques, procedures and tools to be used
during application of the methodology steps to the development of a Process
Performance Requirement Specification. The language (RSL) and tools which
form the Requirements Engineering and Validation System (REVS) are described
in Reference [1] and should be familiar to the reader prior to attempting
to apply the methodology.

1.3 OVERVIEW OF SREM

The desired properties of a requirements specification discussed
above are rather general in nature. These can be precisely defined in
terms of nine characteristics of a good specification:

e Communicability e Traceability

o Testability e Correctness

o Consistency e Design Freedom

e Completeness e Flexibility (Changeability)

e Feasibility

These characteristics, which are self-explanatory, formed the specific
objectives which influenced every aspect of the development of SREM. They
are repeated here to establish the contex. of our objectives. Justification
of the methodology presented here against these goals is contained in [2]
and will not be repeated here.

v

v oy ‘ = i T - R R e ke e e

The reader who wishes to learn how to write software requirements
using the SREM techniques should first study the language and support
software capabilities described in the REVS Users Manual [1]. However,
a general understanding can be obtained from this manual alone. To
faciiitate this, a brief overview of RSL and REVS is provided here.

i.3.1 The Requirements Statement Language (RSL)

RSL is an extensible language which means that certain primitive
concepts are built in and the user can use these to define more complex
language concepts. The primitives are elements, attributes, relationships,
and structures. From these, we have defined a nucleus of concepts which
to date have proven sufficient. Future users of the language can add to
these by means of the extension features as required. These concepts are
introduced as they are used in this manual, and are presented in full in
Appendix A.

The Requirements Statement Language is a user-oriented mechanism for
specifying requirements. It is oriented heavily toward colloquial English,
and uses nouns for elements and attributes and transitive verbs for rela-
tionships; a complementary relationship uses the passive form of the verb.
Both syntax and semantics echo English usage, so that many simple RSL
sentences may be read as English with the same meaning. However, the
precision of RSL, enforced through machine translation, is not typical
of colloquial speech; as a result, most complex RSL sentences are a some-
what stylized form of English.

1.3.2 The Requirements Engineering and Validation System (REVS)

REVS is an integrated set of tools used to support the definition,
analysis, simulation, and documentation of software requirements. A key
concept of REVS is that all requirements are translated into a central
data base called the Abstract System Semantic Model (ASSM). The RSL
statements themselves are not stored in the ASSM. Instead, they are
translated into representations of the information content of the require-
ments statements. This provides an efficient and flexible means of main-
taining a large software specification in a relatively small computer
data base.

The ASSM is a relatioral data base providing a common source for all
requirements analysis and modelling and for documentation. The commonality
of all data ensures that any combination of extractions from the ASSM at
any time (e.g., a document and a simulation) will be mutually consistent.
That consistency is essential to asserting that the requirements modelled
in validation of the specification are equivalent in every sense to those
written in the specification.

REVS provides two mechanisms for entry of data into the ASSM, trans-
lation and interactive graphics, and a powerful set of tools for analysis
termed collectively Requirer-nts Analysis and Data Extraction (RADX).
Translation is the process of converting RSL statements into the ASSM
information, where- the source of the statements may be cards, card images
on tape, or keyboard entry from a terminal. Interactive graphics (RNETGEN)
is a software package executing in conjunction with the the Anagraph color
graphics console to provide ASSM entry and iilustrative documentation.

It permits entry of structures and referenced elements in a manner parallel
with the translator, and in fact may be used in conjunction with transtation
in an operational environment. Significantly, RNETGEN allows the user to
attribute graphical information to his structure, both for multicolor
display on the Anagraph and for documentation via CALCOMP,

Information held in the ASSM may be selected and output using RADX.
That tool is responsive to user direction in selecting either a recreation
of the information translated into the ASSM, or the formatted abstraction
of that information in a user-defined HIERARCHY. The combinaticn of these
features allows complex selections to be effected, so that all information
needed for documentation and much that is essential to configuration manage-
men' can be abstracted from the system without the encumberance of irrele-
van data. Since all data abstractions are drawn from a common ASSM (and
since that data base is confirmably consistent within itself), even redun-
dant assertions in data extractions are absolutely consistent with one
another.

Both static and dynamic analysis are provided by REVS in order to
determine the internal consistency of the ASSM and its validity with
respect to the laws of nature. Static analysis is performed in RADX
which examines the data connectivity through the requirements to determine

1-6

.

b §

g e b e Y

‘ that the laws of logic and the conventions of the language are fully
satisfied throughout. Some forms of completeness testing are also accom-
| plished, determining, for example, that constants are provided as required;
! the scope of completeness testing is largely at the discretion of the user,
since he may define extensive static analyses through RADX commands to
supplement those inherent in the system.

No amount of static testing can fully validate a set of requirements.
To do so, the system they represent must be exercised against a model of

the environment in which the system is to execute. Such simulations are

| provided by an automated simulation builder (SIMGEN), and a software

’ package supporting its execution (SIMXQT). Two different levels of simu-
lation are supported: analytic, in which high-fidelity models of the
environment and explicit performance measures are provided, and functional,

. in which the connectivity of the system is validated with non-analytic models.

1.3.3 The Engineering Methodology

|

(

(‘1I Historically, the methods for developing a software specification
have been as numerous as the developers of such documents. In fact, few

cases can be cited in which any formal methodology could be quoted. Until

the specification appeared (often after tens or hundreds of man-years of

l effort), nothing was in hand to show that it would be generated. In

| addition, it has frequently been true that the quality of the specification

| even with respect to elementary consistency from one requirement to another,

could be verified only very late in software development. Since the prob-

lems were discovered only when the cost of correction was prohibitive, the

requirements were frequently changed, degrading system performance in

order to have some workable product.

The methodology developed within SREP is not only formal, in that it

s provides an explicit sequence of steps leading to the specification, but
also manageable, in that it illuminates multiple phases for management
review and analysis. Along the way, it supports early detection of high-
level anomalies, since it works from the highest levels of software defi-
nition (processing and data flows) to the most detailed (analytic models

‘ and deta content) in a systematic manner. A key feature of SREM is that
the processing functions and data communications are considered in parallel,

R S S

[1-7

e g ¥ e YA g I S A R T e T AT TP U B
o T , il

rather than have either follow the other. As a result, the connectivity
of the system is always complete, and it becomes possible to partition the
requirements effort among several groups early in the process without
risking divergence, omissions, or inconsistencies.

1.3.4 Specification Management

The management of a specification developed under SREM benefits
most from the common source in the ASSM for all representations of the
requirements. Thus, the simulation of the specification and the documen-
tation of its requirements must be consistent at any time, since both
have a single source of data which generate each without human inter-
vention. In addition to a common data base, the methodology itself
supports an orderly developrent which can be annotated with milestones,
recorded on PERT charts, and otherwise controlled with the tools of the
last several decades to provide predictability and control. This is not
to suggest that the creativity of the specification process can either be
scheduled or bypassed; it is still needed, but the methodology isolates
it into segments with high visibility, supporting management cuqnizance %
of its progress and impact.

1.4 APPLICABILITY

These tools and techniques have been developed to address the needs
of BMD software development. With perhaps minor exceptions, however,
SREM is directly applicable to the specification of the requirements for
any central software process for a large real-time system. In fact,
since the methodology is inherently and deliberately computer independent,
the techniques are not limited strictly to software in the form of com-
puter programs. The requirements for any process composed of logical
decisions and computations performed on data can be expressed via SREM --
regardless of whether the end product will be software, hardware, firm-
ware, or some combination of these.

1.5 TERMINOLOGY

At the risk of introducing confusion, we have introduced som2 non-
standard terminology. This has been done for two purposes: (1) to emphasize ‘
the different interpretations given to some concepts, and (2) to emphasize

the generality of the methodology application. An example of the first

is the use of the term ALPHA for a processing step. The more common term
"function" would be misleading to some because there is, in fact, a wide
variety of common interpretations of "function". To avoid misunderstanding,
we use the new, unfamiliar term in order to emphasize its specitTic meaning.
An example of the second is the name applied to the resulting requirements
specification which we call the Process Performance Requirements (PPR).

No docunentation system currently in use recognizes a document called a

PPR. Here, our point is that any software requirements specification,
whether called a B-5 (in MIL-STD 490) or something else in some other

system, must contain a certain set of information. That set of information
is what we call a PPR.

If this use of new terminology causes confusion, we apologize.
However, once the techniques are understood, they can be applied to any
program and the terminology adapted to the needs of the user.

1-9

e P

— e

kit

PART II - TECHNICAL APPROACH
2.0 SREM OVERVIEW

The Software Requirements Engineering Methodology has been developed
during the past several years in conjunction witn development of the
Requirements Engineering and Validation System and as a consequence has
resulted in a clean, clear and comprehensible compatibility between the
methodology and the instruments it uses to formulate and test a require-
ments specification. While REVS embodies the language and tools required
for orderly development of process requirements specifications, SREM
defines the techniques and procedures within which the tools and sound
engineering and management practices are comtineu to generate a specifi-
cation containing the desired properties under a controlled environment.

SREM encompasses four major areas of engineering activity that begin
with receipt of the set of information which defines the system level
requirements on the Data Processing Subsystem. We call this set the
Data Processing System Performance Requirements Specification (DPSPR).

The DPSPR as used here inciudes the Data Processing System Interface
Requirements Specifications and any external subsystem Performance Require-
ments Specifications which influence the definition of the Process Per-
formance Requirements. Using these source documents as a stimulus, the
requirements engineer becomes involved in the four majcr engineering
activities defined by SREM to develop the Process Performance Recuire-
ments Specification. These engineering activities are:

e Identification, definition and development of the
functional requirements,

e Identification, definition and development of the performance
requirements,

e Development of the Process Performance Requirements Speci-
fication and

e Development of the process design feasibility demonstrations
which are generally conducted sequentially and separately.

The inherently sequential nature of the steps of the methodology
appeared at first to make incremerital specification of software awkward.
Cxperience on many programs, notably Systems Technology Program, has made
it clear that the new technology should assume that knowledge of require-
ments will increase continuously throughout the development of the software
specification, rather than be complete when software requirements are first
initiated. Thus, the tools and methodology of SREP were developed to
allow for incremental development of the specification. Specific features,
such as VERSION and the qualified inclusion of R METs in a simulation
provide the capability either for defining segments of the software require-
ments at a time, or for augmenting a full subsystem with additional func-
tions. The consistency and integrity enforced by the system are fundamental
to success in incremental specification. They ensure that:

e Portions of the system specified later than some segments

will be consistent since their connectivity with the early
segments was defined at the highest levels; and

e Any extension of tiie system will be compatible with prior
specification, since any inconsistency would precluce
entering the extension into the ASSM.

During each activity of JREM the features of REVS are utilized to
control, monitor, test and maintain the evolving collection of requirements
statements. The functional requirements are defined in RSL statements and
catalogued by REVS in the ASSM through the TRANSLATOR segment. The accuracy
and correctness of these RSL statements is verified by the Static Analyzer
portion of the RADX segment of REVS. Continuity and completeness of these
RSL statements is analyzed through the SIMGEN and simulation execution
segments of REVS using algorithms for each functional requirement repre~-
sented as executable PASCAL. procedures implemented as BETA models. Next,
the performance requirements are defined in RSL statements and catalogued
by REVS in the ASSM through the TRANSLATOR and attached to the functional

requirements each CONSTRAINS. The accuracy ard correctness of these RSL
statements is again verified by the Static Analyzer portion of the RADX
segment of REVS. Continuity and completeness of these RSL statements is
analyzed through the SIMGEN and simulation execution segments of REVS

using algorithms for each functional requirements, represented as executable
PASCAL. procedures implemented as GAMMA models. Validation of the func-

)

tional and performance requiremenis testability is confirmed by REVS through
the Post-Processing Analyzer using executable PASCAL procedures implemented
as EXTRACTOR and TEST models. In this way, the existence of a feasible
design solution for the collection of functional and performance require-
merts statements is confirmed by REVS through use of candidate algorithms
used as the GAMMA models, and a model of the system environment and threat
(SETS). The models are executed against one another with a variety of
scenarios to demonstrate the existence of a solution to the requirements
statement in the AS3SM. Finally, data collected through RADX are formaticd
and published as a Process Performance Requirements Specification.

The preceding information has been provided to introduce and orient
the reader to the global view of SREM and the REVS instruments used in the
methodology to create a PPR, and to validate it through automated simulation.

The detailed description of the SREM technique of specifying software
functional and performance requirements is presented in Sections 3 and 4.
The methodology is described in the context of an example which is worked

out to the degree necessary to illustrate the method. The example is a
hypothetical system called Track Loop System (TLS). TLS is representative
of the kind and complexity of real BMD systems, and yet is simple enough
to serve as a comprehendible example. A complete DPSPR (including the
interface specifications) for TLS is provided as Appendix F. The system
is summarized below.

2.1 THE TRACK LOOP SYSTEM EXAMPLE

The Track Loop System (TLS) is a subset of a Preliminary Ballistic
Missile Defense System that is capable of nearly autonomous execution in
response to external stimuli. It is the simplest known subsystem with
properties of interest for software definition, and it is one which has
been studied extensively, both in the academic literature and in such

practical programs as Site Defense. Therefore, it has been selected as

the testbed for supporting experimentation in development of the methodology
for software requirements. A pictorial representation of the TLS is pro-
vided in Figure 2-1.

!
e —
VS
S

RADAR RETURNS ,
I ’ ! ' ﬁ_;
DATA PROCESSING Jram— t c2
TRACK LOOP sysTEy _j
Figure 2-1 Track Loop System
M

2-4

{ 1' 2.1.1 Preliminary Ballistic Missile Defense System

A Preliminary Ballistic Missile Defense System (PBMDS) has been
postulated as an environment in which the TLS would execute. It is a
generalized representative of the class of systems currently in develop-
ment, and is particularized for the TLS through representative but non-
real specifications where required. In the Conduct Engagement mode, an
object entering the search region will be detected and designated, tracked,
discriminated, and engaged (as required) in deferise of the ground facilities.
Those functions are implemented through the Data Processing System (DPS),

i a radar or other sensor, and a means of neutralizing hostile objects. For
the purpose of the TLS, only the radar need be defined in detail; other
system elements are identified only to the extent that they impact DPS
requirements.

2.1.2 TLS Requirements

The TLS is required to perform five system level functions: 1) system
initialization and engagement initiation, 2) engagement termination, 3) tar-
get tracking, 4) control of system resources and 5) recording of data during
the engagement. The system includes: the DPS, the Radar and the recording

media and directly interfaces with the external environment through commu-
nications and contro} (C2).

il

In general, the functions of TLS are initiated by messages from C2;

‘ however, track maintenance and certain control functions are autonomous.
The engagement is initiated and terminated by C2 messages; during engagement,
radar data are reported periodically autonomously. When an image is handed

i over to TLS through C2, it is tracked without further direction, until it

l is dropped either by command or hy determination within the DPS. This
configuration thus demonstrates both exogenous and endogenous process

s excitation, and in other ways provides a microcosm of a BMD process.

|

2.2 SUMMARY OF APPENDICES

The Appendices provide a summary of the Requirements Statement
Language and a complete development of the TLS requirements statements.
A complete description of RSL is provided in the REVS Users Manual
(Reference [1]).

Appendix A summarizes the RSL Terminolegy by providing a copy of
the RSL nucleus which defines each element of the language and an illus-
tration of the symbology. Appendix B contains the set of hand-drawn
representations of TLS requirements which correspond to the results ob-
tained from application of the methodology defined in Section 3.1. Appen-
dix C represents the TLS kernel which contains the flow and data hierarchies
developed as a result of the methodology defined in Section 3.2. Appendix
D presents the set of R_NETs and the SUBNET produced by the Calcomp capa-
bility of the interactive graphics segment of REVS. Appendix F represents
the complete TLS Data Base maintained in the ASSM as extracted by the RADX
segment of REVS. Appendix F contains the TLS source snurifications from
which the TLS requirements were developed.

Appendices C through E have been produced by REVS from the ASSM in
much the same manner that the information content of a software specifica-
tion would be developed. Editing of this information into a specification
document would be adapted to the particular needs of a specific program.

A sample PPR specification was produced in Reference [2] and the review it
elicited has underscored the need for adaptation of the extracted infor-
mation io the specitics of an application. Therefore, neither REVS nor
SREM 1s designed to produce a specific specification format. This simple
final step is left to the discretion of the user.

S PR —— i

3.0 FUNCTIONAL REQUIREMENTS

It iz possible and practical to view a software requirement as de-
fining 2ither what must be accomplished or how well it must be done. The
former is termed a "functional requirement", since it specifies data process-
ing functions; the latter is termed a "performance requirement" since it
constrains the quality of performance of the function in the system. In
another sense, it is useful to look upon the functional requirement as
defining the required output in terms of the available inputs. In a sir;’c¢
case, a program might be named SUMMER and have a functional requirement of
generating the sum of a sequence of input numbers (Xi)’ Defining the output
after i inputs to be Yi’ the performance requirement might be that (Yi+1 -
Yi) be within ¢ of Xipy

Note that while the functional requirement specifies what is to be done,
and the performance requirement constrains how well it must be accomplished,
the means of accomplishment is left to process design; since the means of
implementation is not specified, the requirements are said to be design-free.

The form of representation of functional requirements has evolved in
recent years, end has culminated in Requirements Networks (R-Nets). Origi-
nally, verbal descriptions of functions were attempted, but the verbiage was
found to be cumbersome and ambiguous. Later, through Engagement Logic and
Functional Flow Block Diagrams (FFBD's), diagrams replaced many words (the
pictures being worth thousands of words apiece). Unfortunately, much of the
ambiguity was retained. Notably, it was difficult in practice to trace re-
quired processing paths; data definitions were incomplete; and the mechanism
did not lend itself to consistency or completeness analysis.

To avoid the problem of recognizing processing paths, a thread de-
scription was attempted; unfortunately, the number of threads in a real
system proved so large that the (essentially one-dimensional) representa-
tion was almost as hard to use as English text. Conversion to thread trees
somewhat reduced the magnitude of the thread problem, but left the other
difficulties of undesired specificity (in AND branches), ambiguity (espe-
cially in data), and awkwardness for analysis.

it e s

e A— S ~ M et >

The properties preserved in defining R-Nets were:

% o graphic representation of functional requirements;
o path orientation for specification of threads;
e design (implementation) independence.

In addition, the use of R-Nets permitted the additicn of the following
properties:

e unambiguous statement;
¢ analyzable models;
e explicit data specification.

In effect, those six properties became the top-level specification of the
tools and methodology of the SREM functional specification.

It is significant “ 2~ the properties carried over from previous means
of statement are those relating to subjective measures of legibility, util-
ity and design freedom. The added properties are objectively assessable -
most readily by demonstration. Thus, a part of the program has been
the demonstration of completeness, freedom from ambiguity, and other attri-
butes through static analyzers of the explicit (machine-readable) Require-
ments Statement Language (RSL). By expressing the functional requirements
in machine-readable form, and by using the tools developed on a variety of
programs in both industry and academia, it is possible to generate an ulti-
mate test of a functional specification - a functional simulation.

vd

A simulator built without human intervention from a specification is
a total demonstration of the consistency, precision, and completeness (in
at least a limited sense) of that specification. With a suitable driver,
such a simulation provides a useful tool for defining frequency of transac-
tion and examining the gross aspects of system tradeoffs.

Fundamentally, there are three different ways of coriceiving of soft-
ware requirements. The classical approach is functional: what operations
are to be performed by the system logic, as embodied in the software. A
thread approach is more nearly mechanical: what are the interfaces and the r
properties of the messages required to be communicated through them. The
third concept may be termed philosophical: what are the realities of the ,
world the DPS perceives, and what information about those realities must be .
manipulated. Clearly, each approach can lead to mechanisms by which

3-2

requirements may be generated; SREM uses all three concurrently.

The functional approach is embodied in the concept of a Requirements
Network (N-Net), which defines the processing flow required of the software.
The mechanical concepts are reflected in the heavy dependence of SREM on
definitions of messages through interfaces in establishing the top level
of data hierarchies, and philosophy is preserved in the implementation-
independent hierarchies defined under entities. The three viewpoints are
merged in the simulation-level definitions of requirements as data and
executable descriptions; the interrzlationships of the three points of
view are realized in the simulation itself. Sections 3.1 and 3.2 provide
the methodology for generating the highest level of requirement from each
perspective, 3.3 carries the definition to the next level and begins to
interrelate them through RSL statements, and 3.4 completes the methodology
for their realization in the executable description. Sections 3.5 and 3.6
suggest the means for adding descriptive and supportive information to
support specification management and documentation. Section 3.7 extends
the methodology into analytic modelling.

3.1 PHASE 1 - DEFINITION OF SUBSYSTEM ELEMENTS

There are two different "structural" elements to be defined in the
first stage of functional specification. One is the flow connectivity
previously represented with Engagement Logic or FFBD's. The other is new
with the current methodology, and defines the data hierarchies required.
Previously, there was no specific methodcology even for the definition of
flow connectivity; the approach used was often to lock an appropriate num-
ber (typically 3) of the "right people" in a room for a few weeks, and watch
the product appear. By adding the data hierarchy to the structures, we have
been able to identify a step-by-step mechanism for the top-level development,
in which only the areas requiring creativity are left uncontrolled, and
those areas are clearly identified.

The first-time SREM user may find that he has to reorient his thought
processes in order to effectively use the methodology and the REVS software.
In time, he will find that the steps herein form a natursi progression for
the job to be done. He should always keep in mind that his job is to develop
the requirements for software, and not to design the software itself. He
should constantly ask himself, "How can I precisely state what the DPS is

3-3

required to do in the most general way, so that the designer has the maximum 1!
range of choice in deriving the solution?"

A typical specification process usually starts with a notion of the
processing steps involved and later considers the data needed to support
that processing. SREM partially reverses this order of consideration. The
user must first ask two questions: 1) "What data are presented to the DPS
for processing?", and 2) "What data are expected from the DPS as output?"

From the answers to these questions, the user derives his concepts of the
processing steps in between.

| It is suggested that the user accomplish the work at each step-
1 across the breadth of the project before proceeding to the next step.

large projects, involving many pecple, the needs of communication and
coordination make this mandatory.

In

In smaller projects, especially those
: involving one or two people, there is often a rush to do all the steps
|

for one small area of the system before considering the next area of
| concern. This may be possible for a DPS problem where the processing
] functions are independent, but, at best, many valuable insights into the
\ required operation of the DPS as a whole may be lost.
icant amount of rework may be involved,

)

At worst, a signif-

3.1.1 Initial Inputs

The initial inputs required for application of SREM are, typically, &
‘ system specification and its companion interface specifications. The objec-
tive is to generate a complete specification for ti.. data processing sub-
system (DPS) from these basic inputs. Usually, at this early stage of sys-
. tem development the input specifications are incomplete, contain many ambi-
: guities, and leave several issues for future resolution. The SREM user need
| not wait for all gaps to be filled. Instead, the user should proceed from
z that which is clearly defined, and use the facilities of the RSL management
segment to spotlight issues needing resolution. Assumptions and decisions
may be necessary, often based on inadequate data. The SREM user should not
avoid these, but should note them in the ASSM using the RSL element DECISION
and its attributes. The important thing is to make these entries as they arise. ‘E
In this way the SREM user not only leaves a traceable record of current .

. . —
T
-

status for others, but leaves a valuable record of the evolution of his
thoughts about the subsystem for his own future reference.

3.1.2 Interface Definition

The first RSL entries in the ASSM are concerned with identification
of the DPS interfaces which CONNECT with other subsystems. Usualiy, these
are the elements which are most clearly defined in the originating speci-
fications. Also, it has been found that the interfaces, and the messages
passing through them, are the key focal points for progressive development
of the requirements structure.

Consiler the TLS specification (DPSPR) and interface specifications
(IFSs) contained in Appendix F. These documents refer to two subsystems
which interface with the DPS, namely the Radar and the C2 (Command and
Communications). We will refer to C2 as a subsystem for convenience, even
though it is a separate system, external to the TLS. A closer examination
of the DPSPR reveals that the DPS is to output data to permanent files.
Although not explicitiy required by the specification it will later become
apparent that it is conceptually useful to define permanent storage as a
third subsystem separate from the DPS, even though it is embedded in the
DPS. For REVS use we will name the three subsystems SSRADAR, SSC2, and
SSPERMFL, respectively.

In the specifications, three separate interfaces between the DPS and
the radar are mentioned. Through one input interface the radar sends re-
turns to the DPS; through another it sends clock inputs to the DPS. The
DPS issues commands to the radar through an output interface. We wili name
these interfaces RADAR IN, RADAR CLOCK_IN, and RADAR OUT, respectively. The
names are arbitrary, but should be meaningfully related to the specification
terminology. Note that an interface is designated as "input" or "output"
from the viewpoint of the DPS.

Similarly, the specifications call out one input interface between C2
and DPS. We will call this input interface CC_IN. Data recorded by the DPS
in permanent storage apparently are never accessed from that source during
DPS operatinon. Therefore, we will link the DPS to our conceptual subsystem
SSPERMFL via an output interface, DATA_RECORD.

e U

U ———

At this point, the subsystem and interface definitions, and their
relationships, can be coded in RSL for entry into the ASSM. Figure 3-1
shows one way of expressing these data in RSL. Note that the management
segment attribute, DESCRIPTION, has been used to explain the nature of
SSPERMFL. This entry is for example purposes here, and will not be per-
petuated in the TLS example. However, notations such as this have value
in a real system development project and should be encouraged.

Note that the DPS itself is not entered into the ASSM as a SUBSYSTEM,
since it is inherently the object of all software requirements.

3.1.3 Message Definition

Having defined the subsystems, the interfaces, and their connections,
the next logical step is to examine the discrete blocks of data, or MESSAGES
which are PASSED BY the interfaces. A MESSAGE is MADE BY its contents,
whether they be DATA or FILEs.

One must be careful to separate the concepts of "message name" or
"message category" from that of "message type". In RSL, the identifier
associated with MESSAGE refers to the message name or category. MESSAGEs
are distinguished by differences in their data contents. Thus, two blocks
of data with different data contents, which pass through an interface,
must be defined as different MESSAGEs, hence must have different message
names. The message name is not contained in the data, it is an external label.

On the other hand, two packets of data may have identical data con-
tent with different values, and may require different processing to be
done on the data, within the DPS. In this case one would have two instances
of the same MESSAGE, but with different "message type". One would further
expect that one of the data elements in the message would be a message type
identifier, with a unique value for each type. Otherwise, the DPS could
not distinguish between types of messages and perform different processing
operations on each type. Messages with different names must also have a
unique identifier in order for the DPS to distinguish between messages. It
is most economical to require that all messages, whether of different name
or type, contain a type identifier as a data element, with a unique value,

SHRSYSTEM: SSPANLAR,
l COMMECTED T0:
l TNPUT_INTFRFACE: RADAR_IN
TNRUT_JINTFRFACE: RADAR_CLOCK_IN
AUTPUT _INTERFACE: RADAR_OUT,

SHKRSVYSTFM: SQre,
COMMECTED TN
INPUT_INTFRFACF: CC_IN,

SUHSYSTFM: SSPERUFL.
COMNECTED TO: DUTEUT_INTERFACE: NATA_RECORD.
aL DESCRIPTION: WSSPERMFL, ALTHOUGH CONTAINED IN THE DPS,
. IS DFFINED HERE AS A SUHSYSTEM FOR CONVENIENGE
| IN EXPLANATION AMD STMULATIONGS.,

T Ta——

Figure 3-1 RS; Subsystem Entries

Mmessages The rj
ferent values .

cessing, respectively.

two values: FEET
ber is in.

as LENGTH.

————— e

¥
4
2

The Message names
!

» types
| ous interfaces m

ts associated with ¢
System and interface
» Oftep from wide]

Sometimes the specif

he vapj-
Specifica-

ications

IN

MESSAGE _TYPE

LENGTH
1 COMMAND DIMENSIoN
TYPES ¢ START TYPES 3 FEET
SToP INCHES

Figure 3-2 An Elementary Interface Hierarchy

R —

e PR v .-
5 T N L

first branch point. Data elements unique to a specific message are placed
on the branch unique to that message. Elements common to two or more mes-
sages, but excluded from others, are placed on an intermediate branch lead-
ing only to the appropriate messages. (The TLS example discussed below will
illustrate this latter condition.) The data element names may refer to data
items, or files. It is useful to note files as such on the diagram. A
file is a collection of instances of data items each instance having the
same structure. If desired, the SREM user can note the types of each
message below the message name. While the diagram format shown has proven
useful, it is in no way mandatory. The user is encouraged to adopt what-

ever notation or format aids him. The important point is: organize the
material on paper before writing the RSL inputs.

A useful rule-of-thumb for using SREM is: don't define details until
they are needed for the purposes of the moment. At thi. stage of our analy-
sis, we are interested solely in the elements which are common to, and
unique to the various message types. No further detail is needed. For
instance, if it is known that an identifiable group of data is unique to
a given message, it is only necessary to name the group as a data item on
the tree. In practice this is often easy, because the exact composition
of the group may be ambiguous long after the group {tself is identified,

In any case, the composition of a group is easily defined by the RSL rela-
tion INCLUDES when that level of detail is needed.

Now, let us consider the messages in the TLS example, starting with
those coming from the C2 "subsystem". Paragraph 3.2 of the TLS CZ/DPS IFS
states that four types of messages are transmitted from the C2 to the DPS:

¢ Initiate Engagement Mode
e Terminate Engagement Mode
e Handover Image
e Drop Image Track

Implicitly common to all these message types is some sort of message
type identifier. Since these are all common messages we will call this
identifier COMMAND ID. Paragraphs 3.¢.1 and 3.2.2 of the IFS imply that
there are no other data elements in the first two message types. Both of
these types have a common function, namely to command a change in the

3-10

ot

U ——

operating mode of the DPS. Thus, they form a single MESSAGE category
which we will name MODE_CHANGE. Hence, as shown in the diagram of Figure
3-3 , we have a message MODE_CHANGE, of two types, with a single data ele-
merit, COMMAND ID, which distinguishes the two types.

The remaining two message types contain other data elements, in addi-
tion to COMMAND ID, as stated in paragraphs 3.2.3 and 3.2.4. Common to
both is an element called variously "image designation", or "image desig-
nator", but which is obviously a single element which we will call HO_ID
(shortened from HANDOVER_ID). This additional element completes the defi-
nition of the "Drop Image Track" type message. Since the data content of
this message is unique, it forms a message category by itself. We will
name this message TERMINATION because we wish to reserve DROP_TRACK for use
as an enumerated value of COMMAND_ID.

The remaining message type is also in a category by itself, which we
will name a HANDOVER message. In addition to COMMAND ID and HO_ID, para-
graph 3.2.3 of the IFS states that this message contains a data element
"image estimated state". However, paragraph 1.1.2.1a of the DPSPR refers
to an "estimate of state", while paragraph 1.2.2.1g states that "each
handoff shall consist of a unique designator, the state vector, and its
covariance matrix." At this point we could be content with defining the
data element as INITIAL_STATE_ESTIMATE. But, it seems worthwhile to state
the main components, since they are not stated in the IFS paragraph where
one would expect to find them. Thus, we define two data é1ements, INITIAL_
STATE and INITIAL_COVARIANCE, to represent the vector and matrix, respec-
tively. The prefix "initial" is used to avoid confusion with state data
generated by the DPS in the course of subsequent processing. Note that
there 1s no need, at this point, to define the vector components and ma-
trix elements individually. We have now completed, apparently, the defi-
nition of messages related to the CC_IN interface, as shown in Figure 3-3.
These messages can be defined in RSL as shcwn in Figure 3-4. Although not
shown here, it is useful to use the capabilities of the management segment
of RSL to note the source of the state data definitions in the handover
message, and to point out that the IFS is incomplete or at variance with
the DPSPR.

COMMAND_ID

—

HO_TID
INITIAL ~STATE
N AL _ COW\RMN(,E

TERMINATION
TYPE: DRoOP_TRACK

HANDOVER

TYPE 5 HANDGVER _TMAGE

MODE _ CHANGE

TYPES: INITIATE _ENGAGEMENT _Mope {IEMY
TERMINATE _ENGAGEMENT MopE {TEMR

Figure 3-3 Cz Input Hierarchy

3-12

v

INPUT_TMTFRFACF: CC_TN.
PAGSES:
MFSSAGE: #DDF _CHANGE
MESSAGF: HANNOVFR
MESCAGE: TERMINATINN,

MFSSAGF: MONF_CHANGF,
MANRE RY:
NATA: CNAMMANN_IN,

MESSAGF: HANNNVF 2,
MANF RY:
NATA: COUMANN _ID
NATA: HN_TD
NATA: INITIAL_STATE
NATA: INTTIAL_COVARIANCE,

MFSSAGE: TERWTINATIOM,
MANF RYy:
NATA: CNwaANN_ID
NPATA: HN_TH,

Figure 3-4 RSL Message Entries

3-13

3.1.4 The Interface Data Hierarchy

At this point we have partially defined the elements of one of the
two major data hierarchy types associated with SREM. This is the "inter-
face data hierarchy" depicted in Figure 3-5.

A SUBSYSTEM is CONNECTED TO either an INPUT_INTERFACE or an OUTPUT_
INTERFACE which PASSES blocks of data called MESSAGEs. A MESSAGE is MADE
BY individual items of DATA, and/or by a group of DATA which INCLUDES
individual DATA items, and/or by FILES. In turn, a FILE CONTAINS individual
DATA items. The RSL concept of FILE is more general than the usual software
connotation. It is simply a collection of instances of data, each instance
having the same content of data items, without regard to the details of
storage, and without ordering unless specified.

In general, a data item must have a different DATA name in each hier-
archy in which it appears, even though the different names refer to the same
information. The exception is that DATA o FILEs may exist in more than one
MESSAGE. This is due to the fact that only one MESSAGE can be active in the
system at any time. Therefore, the assembly of DATA and FILEs into a MES-
SAGE is unambiguous regardless of the number of MESSAGEs that may be MADE
BY that element. For example, a MESSAGE PASSED THROUGH an INPUT_INTERFACE
only exists at the instant of passage (i.e., the enablement of the interface
network). An ALPHA accesses not the MESSAGE but the DATA it contains; there
can be no ambiguity among those DATA items regardless of the number of MES-
SAGES which might contain them, since there can be no more than one MESSAGE
entering the system for a given enablement.

SREM is heavily oriented toward an orderly analysis of the interface
data hierarchies, in a "top down" direction, as the first step in defining
DPS requirements. This is a natural direction, as the interfaces and the
messages crossing them are usually the most clearly defined elements of the
originating specifications. As the user develops the data definition in
progressively greater detail, the definition of specific processing steps,

or ALPHAs, begins to emerge, as well as the processing flow STRUCTUREZ which
links the ALPHAs.

For INPUT_INTERFACEs, the "top down" consiageration of the data hie--
arrchy follows the flow of processing. For OUTPUT_INTERFACEs, the "top down"

3-14

)

SUBSYSTEM

(CONNECTED TO)

v

INTERFACE

(PASSES)

.

OUTPUT_INTERFACE

MESSAGE

(MADE BY)

_‘Hhhkm“ﬁ““*Haﬁ

(MADE B8Y)

OR

{INPUT_}NTERFACE

DATA

.

(MADE BY)

H\

FILE

DATA (CONTAINS)
(INCLUDES)
d ‘
DATA DATA

3-15

REE s e e g B

Figure 3-5 Interface Data Hierarchy

direction 1s opposite to the processing flow. However, backward tracing 1i

from the output interface is a valuable tool in constructing the steps neces-
sary to form an output MESSAGE.

Initially, the internal processing required of the DPS may be ill-
defined and ambiguous. The requirements engineer will have to draw heavily
on experience to synthesize the connections between input and output. As
an aid in this creative process, he should continually ask, "What must be
done to the data I have in order to provide the output data I need?"

3.1.5 PrcSlems of Definition

"Who wrote this mess?"

That is the question one is tempted to ask when he encounters sub-
paragraphs 3.2.5 and 3.2.6 of the C2/DPS IFS. Two innocent subparagraph

titles lead to a number of confusing questions, which are typical of pre-
liminary specifications.

The titles of subparagraphs 3.2.1 through 3.2.4 correspond to clearly
defined C2 to DPS message types, and the content of the text addresses those 3
types. The contents of 3.2.5, titled "Message Acknowledgement", and 3.2.6,
titled "Error Handling", are TBS (To Be Specified). Do these titles indi-
cate additional input message types, in conflict with the clear definition
in paragraph 3.2? If so, what message is being acknowledged by "Message
Acknowledgement"? No messages from DPS to 02 have been defined, and no
requirement for a DPS output interface to the C2 system is indicated. In

fact, Figure F-1 of the DPSPR (Appendix F) clearly indicates that message
traffic {s one-way, from C2 to DPS.

On the other hand, a requirement for the DPS to acknowledge receipt
of any of the four defined C2 to DPS message types by transmitting a reply

to C2 may be intended. If so, both the DPSPR and IFS must be modified to

reflect this, without ambiguity. Similarly, "Error Handling" awight refer

to either a message type, or to processing in response to erroneous messages.

Resolution of these questions is important because major differences in DPS
definition result from the alternatives.

The SREM user can-either stop work until the problems are resolved, ‘
or can proceed tentatively with the assumptions which make the most sense.

3-16

e e e e

P e

If he chooses to proceed, he should take time to note the problem in the

ASSM and identify what elements are affected by his assumptions. Figure 3-6

shows one way of doing this, for the message acknowledgement problem, using

the RSL management segment. These entries announce the problem and indicate

changes needed later if the assumptions are wrong.

The user may object on the grounds that making these entries and

recording these questions is tedious and taes up his time. True. How-

ever, more of his time would be taken up by other people asking the same

questions over and over again. Worse yet, others may make different ascump-

tions or fail to detect the ambiguities. The result is more time spent
later on rework. With the information recorded in the ASSM, the answers

are available to everyone - even to those who haven't yet thought of the
questions.

It is not within the scope of this manual to explore all the aspects
of traceability and uses of the RSL management segment.

With this brief
illustration we will drop the subject.

For further development of the TLS
example, we will assume that the problems are resolved as follows:

o A message called ACKNOWLEDGEMENT consisting of one data element,

COMMAND ID, is required.

o This message is passed from DPS to C2 via a new output inter-
face, CC_OUT.

"Error Handling" refers to error processing required of the

DPS when a message from C2 is not identified as one of the
four defined types.

3.1.6 R_NET Definition

A Requirements Net, or R_NET is used to describe the required flow of
processing in response to a single stimulus which ENABLES the net. This
stimulus may be either the passage of a MESSAGE through an INPUT_INTERFACE,

or an EVENT defined by arrival at a node on the subject R_NET or on some
other R_NET associated with the DPS.

Each INPUT_INTERFACE must enable an R _NET. Otherwise, DATA in a

MESSAGE passing the interface could not be processed by the DPS. Hence,
there must be at least one R NET for each INPUT_INTERFACE, since only the

processing on an R_NET can distinguish between the arriving messages. Thus,

the first logical step in defining the R _NETS of the DPS is to define one for

NECISINM: MFANTINS_OF MESSAGE _ACKNNWLENGEMENT,

PRORLFMI #TMPLICATION OF CC TN DPS IFS PARAGRAPH 3-2-5

| 1S NOT CLFAR, REVISION OF THIS PARAGRAPH AND/OR
| NPSPR FIGURE 1-1 IS NEFDFD."

ALTERMATIVFS:
| | "1. INTFRPRET MFSSAGE ACKNONLFDGEMENT AS A MFSSAGE. TYPE
FROM €C TN DPS,

' . 2+ INTEPPRET AS A MESSAGE FRGM DPS TO CC IN Rfspopss

: TO EACH CC TO NPS MtssaeF., THIS NEEDS, A DPS -
© OUTPUT INTERFACE T0 CC.™, ;. ., .. o

CHNICF:

"PROCEED WITH. ALTERNATIVE ? PENNING FORMAL RESOLUTION,®

S —

T = — e

Figure 3-6 RSL Decision Entry

3-18 -

each INPUT_INTERFACE. In the TLS example, three such interfaces have been
previously defired, so we need to develop three correspending R _NETs.

R_NETS may be entered into the ASSM manually from the Anagraph termi-
nal, or via a card deck of RSL statements. No matter which method is used,

the net should be diagrammed on paper first to develop the concept fully and
minimize revisions.

As a first example, let us consider the R NET enabled by interface
CC_IN. Following the initial node on the net, one draws the INPUT INTERFACE
itself. It is reasonable then, but not mandatory, to provide an ALPHA for
common processing of all MESSAGEs through that interface, for such purposes
as validating data common to all MESSAGEs. Thus, we have this typical
starting structure.

VALIDATE
HEADER

It was noted in defining the MESSAGEs that they are distinguished by
the differences in their data contents. Since the input to an ALPHA is fixed,
there must be a unique ALPHA for each MESSAGE. There also may be several
message types for each MESSAGE, and it is reasonable to expect different pro-
cessing, hence different ALPHAs, for each type. While not always true, this
is usuaily a profitable assumption at this stage of R NET development. Fur-
ther, an additional ALPHA is usually needed for error processing of messages
not recognized as one of the valid types. Therefore, it is possible to draw
the following skeleton associated with an input interface with the information
gained from our preceding analyses of the specifications. (Refer to Appendix
A for symbols and allowable structures.)

3-19

T Ao i—— R L e T O e o T

l VALIDATE
{ HEADER

ACKNOWLEDGE

INITIATE_ TERMINATE INITIATE _ TERMINATE PROCESS _
TRACK TRACK ENGAGEMENT ENGACEMENT CC_ERAOR

The OR node with multiple branches, as shown, is described in RSL with
the aid of the CONSIDER phrase. The object of consideration is a data ele-
ment with an enumerated set of values, in this case the data element COMMAND _
ID. If the value of COMMAND ID in a particular message does not match the
value of any branch, the OTHERWISE branch is invoked.

The ALPHAs defined above reflect all processing required for a given
message type. The names chosen reflect a gross conception of the nature
of the processing. They are subject to change. As analysis proceeds the
definition of the R_NET will be refined. The first tentative ALPHAs may
expand, and the branching structure will be modified for all but the sim-
plest systems. Hence, the SREM user should not rush to enter an R NET into
the ASSM at the first opportunity. He should wait until the definition of
the net has stabilized and possible relations with other R _NETS are
comprehended.

Where the previous effort was purely mechanical, it is now necessary
to apply some creativity to complete the interface network. There are two
fundamental approaches to that completion from the available documentation:
thread tracing and sentential analysis. Both should be used so that com-
pleteness of statement is assured.

3-20

W“wﬂ‘"‘iv; - - e e SR i S B g
s +

The first operation is thread tracing. By reading the source speci-
fications, the processing steps required may be traced from an input port
to their logical termination. When all paths have been traced, not only
for the input networks but also for those developed in the following para-
graphs, the set of processing steps (ALPHAs) required should be complete.
Sentential analysis provides a cross-check by separating each specification
sentence into its ncuns (which correspond to system data) and its verbs
(which correspond to ALPHAs). The two sets of ALPHAs should be identical;
if not, they are made to be through refinement of the diagrams.

The result of specification analysis is completion of the paths from
each INPUT_INTERFACE. For example, there is a requirement in the TLS that
each MESSAGE received from the CC be acknowledged. Therefore the AND node
is added, an ALPHA is provided to FORM the MESSAGE: ACKNCWLEDGEMENT, and
the appropriate OUTPUT INTERFACE: CC OUT is indicated. Continuing the
process, we arrive at the following diagram. I% is a complete R_NET for
RESPONSE_TO_CC requirements for TLS except that it does not yet reflect
inter-network connectivity. Note that each branch ends at either an OUTPUT_
INTERFACE, or at a TERMINATE symbol.

CC_IN

VALIDATE
HEADER

é)—-————. ACKNOWLEDGE
et

oy,
i

INITIATE_ TERMINATE_ INITIATE_ TERMINATE _ PROCESS _
TRACK TRACK ENGAGEMENT ENGAGEMENT CC_ERROR
DATA_ DATA_

RECORD RECCORD

3-21
L AR S il St PP

i
s

i
e

- T

——— e
S

In tracing input networks, many of the MESSAGEs to be output by the .
software will have been isolated. However, not all messages for any OUTPUT_ g
INTERFACEs, nor indeed any MESSAGE for some of them, may be defined. Thus,
there is an inverse operation for output networks which trace back from an
OUTPUT_INTERFACE through individual ALPHAs for each possible MESSAGE to the
earliest operation required of it in the specifications.

This procedure is not necessary for the network above. A1l MESSAGEs
passed by CC_IN require an ACKNOWLEDGEMENT message response to be passed by
CC_OUT. A1l HANDOVER messages clearly require a TRACK INITIATION message
to be passed by DATA RECORD. The above network completely describes the
only conditions where these responses are generated within the DPS. A
TRACK_TERMINATION message is passed by DATA _RECORD in response to an input
TERMINATION message passed by CC_IN. However, this case represents only
one condition where a TRACK_TERMINATION message is generated by the DPS.

The remaining conditions will occur on other R_NETs. But, all of these
responses have one thing in common. Each is a single MESSAGE passed through
a specific OUTPUT _INTERFACE in response to a given MESSAGE or class of
MESSAGEs passed by a single specific INPUT INTERFACE. These are examples
of “synchronous processing": the input is joined to the output by a direct
path of processing steps, and none of the data used are modified by process-
ing performed on any other path.

)

In the context of R_NETs, logical connectivity is maintained, not only
by a continuous path through one R_NET, but perhaps through additional R_NETS,
by means of EVENTs. An EVENT is an alternate means for enabling an R_NET.

A single logical path is formed by the path leading to the event on the
enabling R_NET and continuing on a path on the enabled R NET. Such paths

represent "synchronous processing" only if none of the data used are modi-
fied by an independent path.

"Asynchronous processing" is a more complex concept to grasp. This
type of processing is implicit when two R_NETs are related by data, but
without the "logical connectivity" represented by flowing tokens. An exam-
ple involving three simple R_NETs will serve to illustrate the basic forms
of "asynchronous processing." The example is defined in Figure 3-7.

Whenever a subsystem SS1 passes an XIN message through the DPS inter- .
face SS1_IN, the R_NET named X_VALUE is enabled. This R_NET accepts the

3-22 v;

R_NET- X_VALUE

SS1_IN R_NET: Z VALUE

MESSAGE: XIN
MADE BY DATA: NEW X

$S2_IN

MESSAGE: YIN
UPDATE X 1ADE BY DATA: Y

NEW X VALUE AVAILABLE

FIND Z L=X+Y

R_NET: ZZ_VALUE
(EVENT: GILTA_T)

MESSAGE: ZOUT

l
| $S2_0UT
| MADE BY DATA: Z

NEW Z AVAILABLE

SQUARE_Z {zz=22

E)DELTAT

Figure 3-7 Three Asynchronous R_NETs

3-23

data NEW X in the message and, if NEW X satisfies certain conditions, up-
dates the value of a global variabie, X, to the value of NEW_X. Whenever

a second subsystem, SS2, passes a YIN message through the interface SS2_IN,
the R_NET named Z VALUE is enabled. This R NET accepts the data Y in the
message and adds it to the current value of X defined in the data base to
form Z (defined as a global variable for this example). The value of Z is
contained in the ZOUT message sent to SS? via SS2_OUT, but is also retained
in the DPS because Z is defined as globa. data. Further, a third R_NET
named ZZ VALUE periodically enshles itself, to compute 22, by means of an
event on its own structure and an associated time delay. The value of Z
which is used is, of course, that which is current in the data base. There
is no specific order of enablement required of the R NETs.

When the reader experiments with this system a little, he will
quickly realize that the values of Z and 22 depend not only on the inputs X
and Y (or their previous values), but also on the sequence of enablement of
the R NETs. Thus, within a given time interval, there is not a one-to-one

correspondence between the latest values of X and Y and the latest values of

Z and Zz. For that matter, no such correspondence exists between Z and

22,

\ A simple example of "asynchronous processing" in the TLS example
might be the use of radar clock time. The sole fun:tion of the R NET
called RADAR TIMING is to accept timing inputs from the radar and update
the global variable RADAR_CLOCK. If another R NET needed radar time, it

\ would use the value of RADAR_CLOCK. This value does not reflect the cur-
rent time, but rather the time at which the radar formed the message which
was last accepted by the R NET called RADAR TIMING.

| The major, and most complicated, example of "asynchronous processing"
in the TLS is the relationship between radar returns and the next set of

‘ radar commands. Synchronous tracking would require that data from the last

' radar return from an object be used to produce the next succeeding radar
order related to that object. Asynchronous tracking allows use of the last
data available in the DPS, even though more current data may be coming soon

\ from the radar. Asynchronous tracking allows less stringent DP response
times, better time-line usage, and permits gradually degraded response with
increased systemn load. Synchronous tracking, on the other hand, places

3-24

oy 2o ! = 4 _________‘_—.._.a-———
l’ s T RS - o

stringent constraints on the DP which lead to saturation and loss of track
under relatively light load.

The definition of an asynchronous processing concept is subtle and
difficult, and is fraught with traps for the unwary. No cookbook solutiors
can be offered for this creative process. First, the R NETs must be traced
both forward from the input interfaces and backward from the output inter-
faces. The data and logical connectivity to fill the gaps between must then
be added through an active and creative engineering thought process. Note
that SREM does provide a framework of organization which fosters consistency,
and ultimateiy leads to a simulation which can detect errors of concept.

While the SREM user is filling in the gaps in the DPS definiticn, lie
must constantly remember that he is not designing software. Rather, he is
defining the requirements which that software must satisfy. When he has
invented a construct which appears to meet the needs, and which survives
simulation, he should view it only as an example which demonstrates that
a DPS solution to system requirements is feasible. It is probably not the
only valid solution, nor should it be specified as such. The SREM user
should constantly reexamine his constructs to ensure that they embody the
requirements in the most general statements he can formulate. If he pur-
sues details beyond the point needed to clearly state the required proper-
ties of ihe DPS, he is overly constraining the design.

When the user reaches an impasse in further defining the R_NETs, he
will find it profitable to define the "entities" with which the OPS is con-
cerned, and the data hierarchies associated with them. These are discussed
in 3.1.7 and 3.1.8. These steps w111 sharpen his concepts of the data flow

within tle DPS, and should suggest ways of bridging the gaps in the processing.

Then the user can return to complete the R_NETs, and possibly add intervening
R_NETs.

3.1.7 Entity Definition

One of the most powerful concepts used in SREM is that of an "entity".
This concept allows the user to express more clearly the role of the DPS
requirements in the same operation, and the RSL facilities provided tend to
enforce that perspective. An "entity" is simply a thing, or category of

3-25

¥ W S T et P TSP S " ke i A SAMRTRE

e

things, in the external world about which the DPS must collect, process, 1E
and maintain data. Entities are closely tied to the reasons for the exis-

tence of the system and its DPS. They are usually implicit in the wording

of the originating specifications, although the new SREM user must train

himself to recognize those which are of significance.

For instance, the basic purpose of the TLS is to gather data on the
position and velocity of designated objects within its detection range in
order to predict the position and velocity of those objects at some future
time. This suggests that "objects" might be an entity. However, "desig-
nated objects" would be a better candidate, because the TLS is not expected
to detect any objects other than those the C2 System orders it to track.

If we were considering the TLS as a whole, this might be a reason-
able choice. But, we are focusing on the DPS. The DPS is not "aware" of
objects because it does not perceive them directly. The radar performs
the sensor functions. Thus, the DPS is only aware of what the radar per-
ceives as objects and reports to the DPS. The nomenclature of the DPSPR
calls these "images". Further reading of the DPSPR shows that much of the
DPS processing is concerned with the proper classification of these images,
and eventual elimination of those which do not correspond to real objects
(ghosts), or which are redundant images of the same object. During the
time that an image is considered an "image in track", a certain instance
of data items must be maintained in the DPS and be associated with the
proper image. When the DPS decides that the image is probably redundant
or a ghost, or should drop track on that image for other reasons, the DPS A
must maintain, for a time, a different set of data about that image.

o4

Thus, we have a notion of a general category of things called "images"
which are of importance to the DPS. In SREM, such a category is called an
ENTITY_CLASS. Hence, for TLS we will define an ENTITY_CLASS named IMAGE.

We are aware of two types of IMAGE, distinguished by the different data

associated with each type. Therefore, we will designate two ENTITY TYPEs,
called IMAGE_IN TRACK, and DROPPED_IMAGE. Each IMAGE of which the DPS is
aware has an instance of data uniquely associated with it. This instance
may be composed of DATA items and FILEs. The composition of the instance

is a function of ENTITY_TYPE and, by definition, should be different in some c ‘
manner from at least one other type in the class. However, data common to £
3-26

all types mey be associated with the ENTITY CLASS itself.

Two types may
have identical data associated with them.

These usually imply a tran-
sition from a common earlier state (e.g., an ENTITY TYPE I is set to

either ENTITY_TYPE J or ENTITY_TYPE K depending on some decision in the
DPS).

A second ENTITY_CLASS is defined in TLS for each radar PULSE. The
pulse is an external phenomenon (an electromagnetic signal) about which the
data processor is found to need data, and which exists in multiple copies.
Theretore, it satisfies the criteria for consideration as an ENTITY CLASGS.
The fact that data must be 'remembered' about each pulse while it is in

transit, and the required data themselves, derive from the IFS through the
process of defining the functional requirement.

Thus, when considering the
determination of range to the target, it is necessary to know both the start
time of the range gate relative to the start of transmission and the time

within the gate that the signal was detected.

The IFS asserts that the
radar return contains the time within the gate; the start time of the gate

must therefore be 'remembered' by the data processor from the command which
gave rise to the return.

Thus, the data required on a pulse in transit have
to do with the transmission parameters relevant to different pulse waveforms.
Consideration of data and logical usage differences leads to the definition

of four ENTITY_TYPES named T1-T2, T3, RETURNED PULSE, and LOST_PULSE within
the ENTITY_CLASS PULSE.

3.1.8 The Entity Data Hierarchy

The second major data hierarchy associated with SREM is the "entity
data hierarchy" depicted in Figure 3-8. The means for manipulating data

contained in an entity herarchy dif<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>